Abstract

A quantum error-correcting code is defined to be a unitary mapping (encoding)\nof k qubits (2-state quantum systems) into a subspace of the quantum state\nspace of n qubits such that if any t of the qubits undergo arbitrary\ndecoherence, not necessarily independently, the resulting n qubits can be used\nto faithfully reconstruct the original quantum state of the k encoded qubits.\nQuantum error-correcting codes are shown to exist with asymptotic rate k/n = 1\n- 2H(2t/n) where H(p) is the binary entropy function -p log p - (1-p) log\n(1-p). Upper bounds on this asymptotic rate are given.\n

Keywords

Quantum error correctionQubitMathematicsQuantum mechanicsDiscrete mathematicsQuantumPhysics

Affiliated Institutions

Related Publications

Publication Info

Year
1996
Type
article
Volume
54
Issue
2
Pages
1098-1105
Citations
2414
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2414
OpenAlex
195
Influential
1872
CrossRef

Cite This

A.R. Calderbank, Peter W. Shor (1996). Good quantum error-correcting codes exist. Physical Review A , 54 (2) , 1098-1105. https://doi.org/10.1103/physreva.54.1098

Identifiers

DOI
10.1103/physreva.54.1098
PMID
9913578
arXiv
quant-ph/9512032

Data Quality

Data completeness: 84%