Abstract

Human ability to understand language is general, flexible, and robust. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-of-domain data. If we aspire to develop models with understanding beyond the detection of superficial correspondences between inputs and outputs, then it is critical to develop a unified model that can execute a range of linguistic tasks across different domains. To facilitate research in this direction, we present the General Language Understanding Evaluation (GLUE, gluebenchmark.com): a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models. For some benchmark tasks, training data is plentiful, but for others it is limited or does not match the genre of the test set. GLUE thus favors models that can represent linguistic knowledge in a way that facilitates sample-efficient learning and effective knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch for the benchmark, four of them feature privately-held test data, which is used to ensure that the benchmark is used fairly. We evaluate baselines that use ELMo (Peters et al., 2018), a powerful transfer learning technique, as well as state-of-the-art sentence representation models. The best models still achieve fairly low absolute scores. Analysis with our diagnostic dataset yields similarly weak performance over all phenomena tested, with some exceptions.

Keywords

Benchmark (surveying)Computer scienceArtificial intelligenceNatural language processingTask (project management)SentenceRepresentation (politics)Natural language understandingSet (abstract data type)Machine learningTransfer of learningLanguage modelTest setNatural language

Affiliated Institutions

Related Publications

Universal Sentence Encoder

We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate pe...

2018 arXiv (Cornell University) 1289 citations

Publication Info

Year
2018
Type
article
Citations
1865
Access
Closed

External Links

Citation Metrics

1865
OpenAlex

Cite This

Alex Wang, Amanpreet Singh, Julian Michael et al. (2018). GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. International Conference on Learning Representations .