Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.
Keywords
Affiliated Institutions
Related Publications
Learning Deconvolution Network for Semantic Segmentation
We propose a novel semantic segmentation algorithm by learning a deep deconvolution network. We learn the network on top of the convolutional layers adopted from VGG 16-layer ne...
Conditional Random Fields as Recurrent Neural Networks
Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep lear...
Network In Network
Abstract: We propose a novel deep network structure called In Network (NIN) to enhance model discriminability for local patches within the receptive field. The conventional con...
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations...
CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features
Regional dropout strategies have been proposed to enhance performance of convolutional neural network classifiers. They have proved to be effective for guiding the model to atte...
Publication Info
- Year
- 2015
- Type
- preprint
- Pages
- 3431-3440
- Citations
- 35498
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.2015.7298965