Abstract
Recent extensions of the DMol3 local orbital density functional method for band structure calculations of insulating and metallic solids are described. Furthermore the method for calculating semilocal pseudopotential matrix elements and basis functions are detailed together with other unpublished parts of the methodology pertaining to gradient functionals and local orbital basis sets. The method is applied to calculations of the enthalpy of formation of a set of molecules and solids. We find that the present numerical localized basis sets yield improved results as compared to previous results for the same functionals. Enthalpies for the formation of H, N, O, F, Cl, and C, Si, S atoms from the thermodynamic reference states are calculated at the same level of theory. It is found that the performance in predicting molecular enthalpies of formation is markedly improved for the Perdew–Burke–Ernzerhof [Phys. Rev. Lett. 77, 3865 (1996)] functional.
Keywords
Affiliated Institutions
Related Publications
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the <i>v</i> -representability problem
Universal variational functionals of densities, first-order density matrices, and natural spin-orbitals are explicitly displayed for variational calculations of ground states of...
What Do the Kohn−Sham Orbitals and Eigenvalues Mean?
Kohn−Sham orbitals and eigenvalues are calculated with gradient-corrected functionals for a set of small molecules (H2O, N2, CrH66-, and PdCl42-), varying basis sets and functio...
Precise density-functional method for periodic structures
A density-functional method for calculations on periodic systems (periodicity in one, two, or three dimensions) is presented in which all aspects of numerical precision are effi...
Discrete Variational Method for the Energy-Band Problem with General Crystal Potentials
A general variational method for efficiently calculating energy bands and charge densities in solids is presented; the method can be viewed as a weighted local-energy procedure ...
Non-empirical pseudopotentials for molecular calculations
Improved three-parameter atomic pseudopotentials are theoretically determined from lithium to krypton. In view of further molecular calculations, accurate expressions are given ...
Publication Info
- Year
- 2000
- Type
- article
- Volume
- 113
- Issue
- 18
- Pages
- 7756-7764
- Citations
- 10488
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.1316015