Abstract
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.
Keywords
Affiliated Institutions
Related Publications
Gas‐phase and liquid‐state properties of esters, nitriles, and nitro compounds with the OPLS‐AA force field
Abstract Nonbonded and torsional parameters for carboxylate esters, nitriles, and nitro compounds have been developed for the OPLS‐AA force field. In addition, torsional paramet...
Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
The parametrization and testing of the OPLS all-atom force field for organic molecules and peptides are described. Parameters for both torsional and nonbonded energetics have be...
Development and testing of a general amber force field
Abstract We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic a...
CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations
Abstract A first‐generation fluctuating charge (FQ) force field to be ultimately applied for protein simulations is presented. The electrostatic model parameters, the atomic har...
XIII. The variation of molecular surface-energy with temperature
1. The well-known relation of volume-energy to temperature, expressed by the equation pv = RT, and the simple relations between p, v, and T when the substance examined is in the...
Publication Info
- Year
- 2011
- Type
- article
- Volume
- 8
- Issue
- 1
- Pages
- 61-74
- Citations
- 736
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/ct200731v