Abstract
Abstract The power conversion efficiency of the most efficient organic photovoltaic (OPV) cells has recently increased to over 10%. To enable further increases, the factors limiting the device efficiency in OPV must be identified. In this review, the operational mechanism of OPV cells is explained and the detailed balance limit to photovoltaic energy conversion, as developed by Shockley and Queisser, is outlined. The various approaches that have been developed to estimate the maximum practically achievable efficiency in OPV are then discussed, based on empirical knowledge of organic semiconductor materials. Subsequently, approaches made to adapt the detailed balance theory to incorporate some of the fundamentally different processes in organic solar cells that originate from using a combination of two complementary, donor and acceptor, organic semiconductors using thermodynamic and kinetic approaches are described. The more empirical formulations to the efficiency limits provide estimates of 10–12%, but the more fundamental descriptions suggest limits of 20–24% to be reachable in single junctions, similar to the highest efficiencies obtained for crystalline silicon p‐n junction solar cells. Closing this gap sets the stage for future materials research and development of OPV.
Keywords
Affiliated Institutions
Related Publications
Two-layer organic photovoltaic cell
A thin-film, two-layer organic photovoltaic cell has been fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative. A power conversion efficiency of about...
Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
Chemically tuned inorganic-organic hybrid materials, based on CH3NH3(═MA)Pb(I(1-x)Br(x))3 perovskites, have been studied using UV-vis absorption and X-ray diffraction patterns a...
Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles
Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic device...
Material challenge for flexible organic devices
Outside of the active device layers, there are a variety of requisite functional layers in flexible organic electronic devices. Whether the application is in displays, lighting,...
Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions
The carrier collection efficiency (η c ) and energy conversion efficiency (η e ) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C 60 ...
Publication Info
- Year
- 2012
- Type
- article
- Volume
- 25
- Issue
- 13
- Pages
- 1847-1858
- Citations
- 605
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/adma.201202873