Abstract
Simulated surface conditions of the Goddard Earth Observing System model, version 5 (GEOS-5), atmospheric general circulation model (AGCM) are examined for the contemporary Greenland Ice Sheet (GrIS). A surface parameterization that explicitly models surface processes including snow compaction, meltwater percolation and refreezing, and surface albedo is found to remedy an erroneous deficit in the annual net surface energy flux and provide an adequate representation of surface mass balance (SMB) in an evaluation using simulations at two spatial resolutions. The simulated 1980–2008 GrIS SMB average is 24.7 ± 4.5 cm yr −1 water-equivalent (w.e.) at ½° model grid spacing, and 18.2 ± 3.3 cm yr −1 w.e. for 2° grid spacing. The spatial variability and seasonal cycle of the ½° simulation compare favorably to recent studies using regional climate models, while results from 2° integrations reproduce the primary features of the SMB field. In comparison to historical glaciological observations, the coarser-resolution model overestimates accumulation in the southern areas of the GrIS, while the overall SMB is underestimated. These changes relate to the sensitivity of accumulation and melt to the resolution of topography. The GEOS-5 SMB fields contrast with available corresponding atmospheric models simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that only a few of the CMIP5 AGCMs examined provide significant summertime runoff, a dominant feature of the GrIS seasonal cycle. This is a condition that will need to be remedied if potential contributions to future eustatic change from polar ice sheets are to be examined with GCMs.
Keywords
Affiliated Institutions
Related Publications
Filtering of Milankovitch Cycles by Earth's Geography
Abstract Earth's land-sea distribution modifies the temperature response to orbitally induced perturbations of the seasonal insolation. We examine this modification in the frequ...
Effect of Drake and Panamanian Gateways on the circulation of an ocean model
Geologic studies indicate that prior to ∼40 Ma the Drake Passage was closed and the Central American Isthmus was open. The effect of these changes has been examined in an ocean ...
Response of a coupled ocean/energy balance model to restricted flow through the Central American Isthmus
Prior ocean modeling work suggested that an open central American isthmus would cause a collapse of the North Atlantic thermohaline circulation because of free exchange of low s...
A box diffusion model to study the carbon dioxide exchange in nature
Phenomena related to the natural carbon cycle as the 14C distribution between atmosphere and ocean and the atmospheric response to the input of fossil fuel CO<sub>2</sub> and of...
Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure
In September–October 2015, El Niño and positive Indian Ocean Dipole conditions set the stage for massive fires in Sumatra and Kalimantan (Indonesian Borneo), leading to persiste...
Publication Info
- Year
- 2014
- Type
- article
- Volume
- 27
- Issue
- 13
- Pages
- 4835-4856
- Citations
- 87
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1175/jcli-d-13-00635.1