Abstract
The serine/threonine kinase Akt (also known as protein kinase B) is activated in response to various stimuli by a mechanism involving phosphoinositide 3-kinase (PI3-K). Akt provides a survival signal that protects cells from apoptosis induced by growth factor withdrawal, but its function in other forms of stress is less clear. Here we investigated the role of PI3-K/Akt during the cellular response to oxidant injury. H(2)O(2) treatment elevated Akt activity in multiple cell types in a time- (5-30 min) and dose (400 microM-2 mm)-dependent manner. Expression of a dominant negative mutant of p85 (regulatory component of PI3-K) and treatment with inhibitors of PI3-K (wortmannin and LY294002) prevented H(2)O(2)-induced Akt activation. Akt activation by H(2)O(2) also depended on epidermal growth factor receptor (EGFR) signaling; H(2)O(2) treatment led to EGFR phosphorylation, and inhibition of EGFR activation prevented Akt activation by H(2)O(2). As H(2)O(2) causes apoptosis of HeLa cells, we investigated whether alterations of PI3-K/Akt signaling would affect this response. Wortmannin and LY294002 treatment significantly enhanced H(2)O(2)-induced apoptosis, whereas expression of exogenous myristoylated Akt (an activated form) inhibited cell death. Constitutive expression of v-Akt likewise enhanced survival of H(2)O(2)-treated NIH3T3 cells. These results suggest that H(2)O(2) activates Akt via an EGFR/PI3-K-dependent pathway and that elevated Akt activity confers protection against oxidative stress-induced apoptosis.
Keywords
Affiliated Institutions
Related Publications
Fyn and JAK2 Mediate Ras Activation by Reactive Oxygen Species
Reactive oxygen species (ROS) activate Ras and the extracellular signal-regulated kinase (ERK) cascade. Because JAK2 is a critical mediator for Ras/Raf/ERK activation by several...
Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions
Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mes...
Phosphatidylinositol 3-Kinase and Xanthine Oxidase Regulate Nitric Oxide and Reactive Oxygen Species Productions by Apoptotic Lymphocyte Microparticles in Endothelial Cells
Abstract Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. We have previously shown that MPs from apoptotic T cells induce endothelial dy...
Big Mitogen-activated Protein Kinase 1 (BMK1) Is a Redox-sensitive Kinase
Mitogen-activated protein (MAP) kinases are a multigene family activated by many extracellular stimuli. There are three groups of MAP kinases based on their dual phosphorylation...
c-Src Is Required for Oxidative Stress-mediated Activation of Big Mitogen-activated Protein Kinase 1 (BMK1)
Big mitogen-activated kinase 1 (BMK1) or extracellular signal-regulated kinase-5 (ERK5) has recently been identified as a new member of the mitogen-activated protein kinase fami...
Publication Info
- Year
- 2000
- Type
- article
- Volume
- 275
- Issue
- 19
- Pages
- 14624-14631
- Citations
- 459
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1074/jbc.275.19.14624