Abstract
Nonrelativistic and quasirelativistic energy-adjusted ab initio pseudopotentials substituting the 1s–3d core orbitals with corresponding spin–orbit operators for the rare earth elements Ce through Yb have been generated. Excitation and ionization energies from numerical pseudopotential calculations differ by less than 0.1 eV from corresponding numerical all–electron results. The pseudopotentials for Ce have been tested in molecular calculations for the 3Φ ground state of CeO. The derived spectroscopic constants from quasirelativistic pseudopotential CI(SD) calculations including Davidson’s correction (Re=1.827 Å, De=6.95 eV, ωe=834 cm−1) are in good agreement with experimental values (Re=1.820 Å, De=8.19 eV, ωe=862 cm−1).
Keywords
Affiliated Institutions
Related Publications
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials for molecular calculations. II. All-electron comparisons and modifications of the procedure
Recently methods have been developed [L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976)] to replace the core electrons of atoms by ab initio effective co...
Relativistic effects in <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH
A method is described for obtaining l-dependent relativistic effective core potentials (ECPs) from Dirac–Fock self-consistent field atomic wave functions. These potentials are d...
<i>Ab initio</i> effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ...
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> studies of the electronic structrue of UF6, UF6+, and UF−6 using relativistic effective core potentials
A b initio calculations are performed on the electronic states of UF6, UF6+, and UF−6 using a relativistic effective core potential (ECP) for uranium and a nonrelativistic ECP f...
<i>Ab initio</i>up to the melting point: Anharmonicity and vacancies in aluminum
We propose a fully ab initio based integrated approach to determine the volume and temperature dependent free-energy surface of nonmagnetic crystalline solids up to the melting ...
Publication Info
- Year
- 1989
- Type
- article
- Volume
- 90
- Issue
- 3
- Pages
- 1730-1734
- Citations
- 1136
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.456066