Abstract
Continuum solvation methods can provide an accurate and inexpensive embedding of quantum simulations in liquid or complex dielectric environments. Notwithstanding a long history and manifold applications to isolated systems in open boundary conditions, their extension to materials simulations, typically entailing periodic boundary conditions, is very recent, and special care is needed to address correctly the electrostatic terms. We discuss here how periodic boundary corrections developed for systems in vacuum should be modified to take into account solvent effects, using as a general framework the self-consistent continuum solvation model developed within plane-wave density-functional theory [O. Andreussi et al., J. Chem. Phys. 136, 064102 (2012)]. A comprehensive discussion of real-and reciprocal-space corrective approaches is presented, together with an assessment of their ability to remove electrostatic interactions between periodic replicas. Numerical results for zero-and two-dimensional charged systems highlight the effectiveness of the different suggestions, and underline the importance of a proper treatment of electrostatic interactions in first-principles studies of charged systems in solution.
Keywords
Affiliated Institutions
Related Publications
Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction: A continuum electrostatics study
The use of Ewald and related methods to handle electrostatic interactions in explicit-solvent simulations of solutions imposes an artificial periodicity on systems which are inh...
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functiona...
The solvation reaction field for a hydrogen atom in a dielectric continuum
A reaction field exists even for a nonpolar solute embedded in a spherical cavity within a surrounding homogeneous dielectric continuum. This arises from the tail of the electro...
Analytical energy derivatives for a realistic continuum model of solvation: Application to the analysis of solvent effects on reaction paths
Analytical expressions for the first and second derivatives of the Hartree–Fock energy have been derived in case of a solvated system simulated by a multipolar charge distributi...
Solvated ensemble averaging in the calculation of partial atomic charges
Abstract In the calculation of partial atomic charges, for use in molecular mechanics or dynamics simulations, it is common practice to select only a single conformation for the...
Publication Info
- Year
- 2014
- Type
- article
- Volume
- 90
- Issue
- 24
- Citations
- 98
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.90.245101