Abstract
This communication deals with the general theory of obtaining numerical electronic wave functions for the stationary states of atoms and molecules. It is shown that by taking Gaussian functions, and functions derived from these by differentiation with respect to the parameters, complete systems of functions can be constructed appropriate to any molecular problem, and that all the necessary integrals can be explicitly evaluated. These can be used in connexion with the molecular orbital method, or localized bond method, or the general method of treating linear combinations of many Slater determinants by the variational procedure. This general method of obtaining a sequence of solutions converging to the accurate solution is examined. It is shown that the only obstacle to the evaluation of wave functions of any required degree of accuracy is the labour of computation. A modification of the general method applicable to atoms is discussed and considered to be extremely practicable.
Keywords
Affiliated Institutions
Related Publications
Achieving Linear Scaling for the Electronic Quantum Coulomb Problem
The computation of the electron-electron Coulomb interaction is one of the limiting factors in ab initio electronic structure calculations. The computational requirements for ca...
Precise density-functional method for periodic structures
A density-functional method for calculations on periodic systems (periodicity in one, two, or three dimensions) is presented in which all aspects of numerical precision are effi...
Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals
Least-squares representations of Slater-type atomic orbitals as a sum of Gaussian-type orbitals are presented. These have the special feature that common Gaussian exponents are ...
Electronic States as Linear Combinations of Muffin-Tin Orbitals
A general method for the calculation of electronic states in solids and molecules is proposed. As in the augmented-plane-wave scheme, we use the variational principle for the Ha...
Self-Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater-Type Orbitals. Extension to Second-Row Molecules
Least-squares representations of the 3s and 3p Slater-type atomic orbitals by a small number of Gaussian functions are presented. The use of these Gaussian representations in se...
Publication Info
- Year
- 1950
- Type
- article
- Volume
- 200
- Issue
- 1063
- Pages
- 542-554
- Citations
- 1239
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1098/rspa.1950.0036