Abstract
We describe efficient algorithms for projecting a vector onto the ℓ1-ball. We present two methods for projection. The first performs exact projection in O(n) expected time, where n is the dimension of the space. The second works on vectors k of whose elements are perturbed outside the ℓ1-ball, projecting in O(k log(n)) time. This setting is especially useful for online learning in sparse feature spaces such as text categorization applications. We demonstrate the merits and effectiveness of our algorithms in numerous batch and online learning tasks. We show that variants of stochastic gradient projection methods augmented with our efficient projection procedures outperform interior point methods, which are considered state-of-the-art optimization techniques. We also show that in online settings gradient updates with ℓ1 projections outperform the exponentiated gradient algorithm while obtaining models with high degrees of sparsity. 1.
Keywords
Affiliated Institutions
Related Publications
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of machine learning tasks. Several researchers have recently ...
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (rand...
Efficient MATLAB Computations with Sparse and Factored Tensors
In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. ...
Compressed sensing
Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...
Publication Info
- Year
- 2008
- Type
- article
- Pages
- 272-279
- Citations
- 1202
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1145/1390156.1390191