Abstract
The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of "recognition by parts." It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Nonnegative Matrix Factorization) and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortions.
Keywords
Affiliated Institutions
Related Publications
Low-dimensional representation of faces in higher dimensions of the face space
Faces can be represented efficiently as a weighted linear combination of the eigenvectors of a covariance matrix of face images. It has also been shown [ J. Opt. Soc. Am.4, 519–...
A general framework for object detection
This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representat...
Object class recognition by unsupervised scale-invariant learning
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible const...
PCA-SIFT: a more distinctive representation for local image descriptors
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid (June 2003) rec...
Image Super-Resolution Via Sparse Representation
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 27
- Issue
- 12
- Pages
- 1977-1981
- Citations
- 215
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tpami.2005.242