Abstract
Abstract Null hypothesis significance testing (NHST) is the dominant statistical approach in biology, although it has many, frequently unappreciated, problems. Most importantly, NHST does not provide us with two crucial pieces of information: (1) the magnitude of an effect of interest, and (2) the precision of the estimate of the magnitude of that effect. All biologists should be ultimately interested in biological importance, which may be assessed using the magnitude of an effect, but not its statistical significance. Therefore, we advocate presentation of measures of the magnitude of effects (i.e. effect size statistics) and their confidence intervals (CIs) in all biological journals. Combined use of an effect size and its CIs enables one to assess the relationships within data more effectively than the use of p values, regardless of statistical significance. In addition, routine presentation of effect sizes will encourage researchers to view their results in the context of previous research and facilitate the incorporation of results into future meta‐analysis, which has been increasingly used as the standard method of quantitative review in biology. In this article, we extensively discuss two dimensionless (and thus standardised) classes of effect size statistics: d statistics (standardised mean difference) and r statistics (correlation coefficient), because these can be calculated from almost all study designs and also because their calculations are essential for meta‐analysis. However, our focus on these standardised effect size statistics does not mean unstandardised effect size statistics (e.g. mean difference and regression coefficient) are less important. We provide potential solutions for four main technical problems researchers may encounter when calculating effect size and CIs: (1) when covariates exist, (2) when bias in estimating effect size is possible, (3) when data have non‐normal error structure and/or variances, and (4) when data are non‐independent. Although interpretations of effect sizes are often difficult, we provide some pointers to help researchers. This paper serves both as a beginner’s instruction manual and a stimulus for changing statistical practice for the better in the biological sciences.
Keywords
Affiliated Institutions
Related Publications
Statistical Problems in the Reporting of Clinical Trials
Reports of clinical trials often contain a wealth of data comparing treatments. This can lead to problems in interpretation, particularly when significance testing is used exten...
Sifting the evidence---what's wrong with significance tests? Another comment on the role of statistical methods
The findings of medical research are often met with considerable scepticism, even when they have apparently come from studies with sound methodologies that have been subjected t...
Correlation Coefficients: Appropriate Use and Interpretation
Correlation in the broadest sense is a measure of an association between variables. In correlated data, the change in the magnitude of 1 variable is associated with a change in ...
Confidence Sets for the Mean of a Multivariate Normal Distribution
SUMMARY An attempt is made to determine confidence sets for the mean of a multivariate normal distribution with known covariance matrix that take advantage of the fact that the ...
Some Methods for Strengthening the Common χ 2 Tests
Since the x2 tests of goodness of fit and of association in contingency tables are presented in many courses on statistical methods for beginners in the subject, it is not surpr...
Publication Info
- Year
- 2007
- Type
- review
- Volume
- 82
- Issue
- 4
- Pages
- 591-605
- Citations
- 3646
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1111/j.1469-185x.2007.00027.x