Abstract

A general equation for electron motion in a plasma is developed which includes a term arising from electron gas pressure. The resulting expression is $\frac{{\ensuremath{\partial}}^{2}\ensuremath{\xi}}{\ensuremath{\partial}{t}^{2}}+(\frac{4\ensuremath{\pi}n{e}^{2}}{m})\ensuremath{\xi}=(\frac{\mathrm{kT}}{m}){\ensuremath{\nabla}}^{2}\ensuremath{\xi},$ where $\ensuremath{\xi}$ is electron displacement, $n$ electron density, and $T$ electron gas temperature. From this it is found that the possible frequencies of free vibration form a series given by ${f}_{i}={(\frac{\mathrm{kT}}{\ensuremath{\lambda}_{i}^{2}m}+\frac{n{e}^{2}}{\ensuremath{\pi}m})}^{\frac{1}{2}}$. The lower limit corresponds to the Tonks-Langmuir value ${(\frac{n{e}^{2}}{\ensuremath{\pi}m})}^{\frac{1}{2}}$, while the other frequencies depend upon the possible standing waves which may exist. The theory explains the observed variation of frequency with electron gas temperature.

Keywords

PhysicsElectronNabla symbolFermi gasAtomic physicsPlasma oscillationPlasmaCondensed matter physicsQuantum mechanics

Affiliated Institutions

Related Publications

Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes

Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...

1999 Physical review. B, Condensed matter 622 citations

Publication Info

Year
1936
Type
article
Volume
49
Issue
10
Pages
753-754
Citations
17
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

17
OpenAlex

Cite This

Ernest G. Linder (1936). Effect of Electron Pressure on Plasma Electron Oscillations. Physical Review , 49 (10) , 753-754. https://doi.org/10.1103/physrev.49.753

Identifiers

DOI
10.1103/physrev.49.753