Abstract
An extensive set of reliable gross Earth data has been inverted to obtain a new estimate of the radial variations of seismic velocities and density in the Earth. The basic data set includes the observed mass and moment of inertia, the average periods of free oscillation (taken mainly from the Dziewonski-Gilbert study), and five new sets of differential travel-time data. The differential travel-time data consists of the times of PcP-P and ScS-S, which contain information about mantle structure, and the times of P′_(AB) - P′_(DF) and P′_(BC)-P′_(DF) which are sensitive to core structure. A simple but realistic starting model was constructed using a number of physical assumptions, such as requiring the Adams-Williamson relation to hold in the lower mantle and core. The data were inverted using an iterative linear estimation algorithm. By using baseline-insensitive differential travel times and averaged eigenperiods, a considerable improvement in both the quality of the fit and the resolving power of the data set has been realized. The spheroidal and toroidal data are fit on the average to 0·04 and 0·08 per cent, respectively. The final model, designated model B1, also agrees with Rayleigh and Love wave phase and group velocity data. \n \nThe ray-theoretical travel times of P waves computed from model B1 are about 0·8s later than the 1968 Seismological Tables with residuals decreasing with distance, in agreement with Cleary & Hales and other recent studies. The computed PcP, PKP, and PKiKP times are generally within 0·5 s of the times obtained in recent studies. The travel times of S computed from B1 are 5–10 s later than the Jeffreys-Sullen Tables in the distance range 30° to 95°, with residuals increasing with distance. These S times are in general agreement with the more recent data of Kogan, Ibrahim & Nuttli, Lehmann, Cleary, and Bolt et al. \n \nModel B1 is characterized by an upper mantle with a high, 4·8 km s^(−1), S_n velocity and a normal, 3·33 g cm^(−3), density. A low-velocity zone for S is required by the data, but a possible low-velocity zone for compressional waves cannot be resolved by the basic data set. The upper mantle transition zone contains two first-order discontinuities at depths of 420 km and 671 km. Between these discontinuities the shear velocity decreases with depth. The radius of the core, fixed by PcP-P times and previous mode inversions, is 3485 km, and the radius of the inner core-outer core boundary is 1215 km. There are no other first-order discontinuities in the core model. The shear velocity in the inner core is about 3·5 km s^(−1).
Keywords
Affiliated Institutions
Related Publications
Differential PKiKP Travel Times and the Radius of the Inner Core
A value for the radius of the inner core is computed from differential PKiKP (PKiKP minus PcP) arrival time data and current Earth models. The data support an inner core radius ...
Differential PcP Travel Times and the Radius of the Core
Backus-Gilbert inversions of a new differential PcP data set result in estimates of the core radius, 3484–3486 km, compatible with those obtained from the inversion of large set...
Pulse distortion and Hilbert transformation in multiply reflected and refracted body waves
abstract Many seismic body waves are associated with rays which are not minimum travel-time paths. Such arrivals contain pulse deformation due to a phase shift in each frequency...
Estimation of surface focus<i>P</i>travel times
Abstract An iterative technique was used to locate some 400 earthquakes, estimate corrections to the Jeffreys-Bullen P travel times and estimate azimuthally dependent station ad...
An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra
A cyclic process of refining models of the mechanical structure of the Earth and models of the mechanism of one or more earthquakes is developed. The theory of the elastic-gravi...
Publication Info
- Year
- 1974
- Type
- article
- Volume
- 36
- Issue
- 2
- Pages
- 411-459
- Citations
- 226
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1111/j.1365-246x.1974.tb03648.x