Abstract
Precipitation in remote mountainous areas dominates the water balance of many water-short areas of the globe, such as western North America. The inaccessibility of such environments prevents adequate measurement of the spatial distribution of precipitation and, hence, direct estimation of the water balance from observations of precipitation and runoff. Resolution constraints in atmospheric models can likewise result in large biases in prediction of the water balance for grid cells that include highly diverse topography. Modeling of the advection of moisture over topographic barriers at a spatial scale sufficient to resolve the dominant topographic features offers one method of better predicting the spatial distribution of precipitation in mountainous areas. A model is described herein that simulates Lagrangian transport of moist static energy and total water through a 3D finite-element grid, where precipitation is the only scavenging agent of both variables. The model is aimed primarily at the reproduction of the properties of high-elevation precipitation for long periods of time, but it operates at a time scale (during storm periods) of 10 min to 1 h and, therefore, is also able to reproduce the distribution of storm precipitation with an accuracy that may make it appropriate for the forecasting of extreme events. The model was tested by application to the Olympic Mountains, Washington, for a period of eight years (1967–74). Areal average precipitation, estimated through use of seasonal and annual runoff, was reproduced with errors in the 10%–15% range. Similar accuracy was achieved using point estimates of monthly precipitation from snow courses and low-elevation precipitation gauges.
Keywords
Affiliated Institutions
Related Publications
Evaluation of the ERA-40 Surface Water Budget and Surface Temperature for the Mackenzie River Basin
The systematic biases in temperature and precipitation, and the surface water budget of European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40) for ...
Very high resolution interpolated climate surfaces for global land areas
We developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution). The c...
TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015
Abstract We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. ...
Interannual Climate Variability and Snowpack in the Western United States
An important part of the water supply in the western United States is derived from runoff fed by mountain snowmelt Snow accumulation responds to both precipitation and temperatu...
Partial Area Contributions to Storm Runoff in a Small New England Watershed
During an experimental study of runoff producing mechanisms in a small drainage basin, the major portion of storm runoff was produced as overland flow on a small proportion of t...
Publication Info
- Year
- 1993
- Type
- article
- Volume
- 121
- Issue
- 4
- Pages
- 1195-1214
- Citations
- 104
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1175/1520-0493(1993)121<1195:dmotsd>2.0.co;2