Abstract
A systematic search is made for all renormalizable theories of heavy vector bosons. It is argued that in any renormalizable Lagrangian theory high-energy unitarity bounds should not be violated in perturbation theory (apart from logarithmic factors in the energy). This leads to the specific requirement of "tree unitarity": the $N$-particle $S$-matrix elements in the tree approximation must grow no more rapidly than ${E}^{4\ensuremath{-}N}$ in the limit of high energy ($E$) at fixed, nonzero angles (i.e., at angles such that all invariants ${p}_{i}\ifmmode\cdot\else\textperiodcentered\fi{}{p}_{j}$, $i\ensuremath{\ne}j$, grow like ${E}^{2}$). We have imposed this tree-unitarity criterion on the most general scalar, spinor, and vector Lagrangian with terms of mass dimension less than or equal to four; a certain class of nonpolynomial Lagrangians is also considered. It is proved that any such theory is tree-unitary if and only if it is equivalent under a point transformation to a spontaneously broken gauge theory, possibly modified by the addition of mass terms for vectors associated with invariant Abelian subgroups. Our result suggests that gauge theories are the only renormalizable theories of massive vector particles and that the existence of Lie groups of internal symmetries in particle physics can be traced to the requirement of renormalizability.
Keywords
Affiliated Institutions
Related Publications
Weak interactions at very high energies: The role of the Higgs-boson mass
We give an $S$-matrix-theoretic demonstration that if the Higgs-boson mass exceeds ${M}_{c}={(8\ensuremath{\pi}\frac{\sqrt{2}}{3}{G}_{F})}^{\frac{1}{2}}$, parital-wave unitarity...
Uniqueness of Spontaneously Broken Gauge Theories
We have made a systematic search for theories of interacting heavy vector mesons which have unitarily bound trees. In simple cases (four vector mesons and one scalar particle) t...
Spontaneous Symmetry Breakdown without Massless Bosons
We examine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a result of spontaneous breakdown of $U(1)$ symmetry one of the scalar bo...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Can the dark energy equation-of-state parameter<i>w</i>be less than<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>−</mml:mi><mml:mn>1</mml:mn><mml:mi>?</mml:mi></mml:math>
Models of dark energy are conveniently characterized by the equation-of-state\nparameter w=p/\\rho, where \\rho is the energy density and p is the pressure.\nImposing the Domina...
Publication Info
- Year
- 1974
- Type
- article
- Volume
- 10
- Issue
- 4
- Pages
- 1145-1167
- Citations
- 845
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevd.10.1145