Abstract
We present a general scheme for the computation of the time dependent (TD) quadratic susceptibility (χ(2)) of an extended insulator obtained by applying the ‘2n + 1 ’ theorem to the action functional as defined in TD density functional theory. The resulting expression for χ (2) includes self-consistent local-field effects, and is a simple function of the linear response of the system. We compute the static χ (2) of nine III-V and five II-VI semiconductors using the local density approximation(LDA) obtaining good agreement with experiment. For GaP we also evaluate the TD χ (2) for second harmonic generation using TD-LDA.
Keywords
Affiliated Institutions
Related Publications
Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition
The linear and nonlinear (χ (2) ) optical responses of Langmuir monolayers of organically functionalized silver quantum dots were measured as a continuous function of interparti...
Precise density-functional method for periodic structures
A density-functional method for calculations on periodic systems (periodicity in one, two, or three dimensions) is presented in which all aspects of numerical precision are effi...
Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree–Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2
The density functional definition of exchange and correlation differs from the traditional one. In order to calculate the density functional theory (DFT), quantities accurately,...
<i>Ab initio</i>calculation of phonon dispersions in semiconductors
The density-functional linear-response approach to lattice-dynamical calculations in semiconductors is presented in full detail. As an application, we calculate complete phonon ...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 53
- Issue
- 23
- Pages
- 15638-15642
- Citations
- 110
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.53.15638