Abstract
Rectangular current pulses of duration 0.14 μs, flowing across Bloch domain walls in Ni81Fe19 films, cause displacements Δx of these walls, observable by Kerr-contrast microscopy. In zero magnetic field, Δx reaches ≂14 μm/pulse at current densities ≂30% above the value jc where wall motion starts. This critical current density is jc≂1.2×1010 A/m2 for a film thickness w=263 nm. We have measured jc versus film thickness for w=120–740 nm, and find jc∝w−2.1. This suggests strongly that the observed wall motion is associated with an S-shaped distortion of the wall by the circumferential magnetic field of the current. This wall distortion is limited by the wall surface tension. The wall structure becomes that of the so-called asymmetric Néel wall. Through wall distortion, the current pulse pumps kinetic energy and momentum into the wall. This kinetic energy is then dissipated during ballistic wall motion happening largely after the end of the pulse. We also find jc to be independent of pulse duration.
Keywords
Affiliated Institutions
Related Publications
Exchange forces between domain wall and electric current in permalloy films of variable thickness
Wall displacements are induced by large current pulses crossing a wall, in Ni81Fe19 films. In films of thickness w<35 nm containing Néel walls, the sense of wall motion i...
Domain Walls in Antiferromagnets and the Weak Ferromagnetism of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>α</mml:mi></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
At the N\'eel temperature local nucleations of the antiferromagnetic order and their subsequent growth lead to the formation of domain walls. The domains in an antiferromagnet a...
On the Theory of Spin Waves in Ferromagnetic Media
The theory of spin waves, leading to the Bloch ${T}^{\frac{3}{2}}$ law for the temperature variation of saturation magnetization, is discussed for ferromagnetic insulators and m...
Perpendicular giant magnetoresistances of Ag/Co multilayers
We present measurements at 4.2 K of the magnetoresistance (MR) measured with the current perpendicular to the layer planes (CPP) of equal and unequal thickness Ag/Co magnetic mu...
Static and dynamic magnetic properties of spherical magnetite nanoparticles
We present a detailed study of static and dynamic magnetic behavior of Fe3O4 nanoparticles with average particle sizes 〈d〉 ranging from 5 to 150 nm. Bulk-like properties such as...
Publication Info
- Year
- 1994
- Type
- article
- Volume
- 76
- Issue
- 8
- Pages
- 4787-4792
- Citations
- 34
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.357250