Keywords
Affiliated Institutions
Related Publications
Is object localization for free? - Weakly-supervised learning with convolutional neural networks
Successful methods for visual object recognition typically rely on training datasets containing lots of richly annotated images. Detailed image annotation, e.g. by object boundi...
Learning Deep Features for Discriminative Localization
In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network (CNN) to have remarkable...
Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
Bounding box regression is the crucial step in object detection. In existing methods, while ℓn-norm loss is widely adopted for bounding box regression, it is not tailored to the...
EfficientDet: Scalable and Efficient Object Detection
Model efficiency has become increasingly important in computer vision. In this paper, we systematically study neural network architecture design choices for object detection and...
Striving for Simplicity: The All Convolutional Net
Most modern convolutional neural networks (CNNs) used for object recognition are built using the same principles: Alternating convolution and max-pooling layers followed by a sm...
Publication Info
- Year
- 2018
- Type
- book-chapter
- Pages
- 765-781
- Citations
- 3403
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1007/978-3-030-01264-9_45