Abstract
Constant temperature molecular dynamics calculation has been carried out on Lennard-Jones liquid simulating argon. This method, proposed recently by Andersen, intends to transform the system from microcanonical to canonical ensemble and to keep the temperature of the system a constant value by the generation of random velocities when molecules exchange their energies with heat reservoir with a certain probability. A simple scheme is given for the estimation of collision probability and the effect of introducing this probability on dynamic behavior is examined in detail for 108 argon atoms as a test simulation. It is established that a collision probability of 0.01 is sufficient to realize the constancy of temperature reasonably well with no appreciable disturbance in the dynamic behavior. A model of pure water with Matsuoka–Clementi–Yoshimine (MCY) potential has also been simulated in the same manner. In the case of 216 MCY water at 298.15 K, the temperature difference is only 0.73 K with a collision probability of 0.005. Various static properties of MCY water have been calculated with reasonable agreement with those by previous Monte Carlo calculation, and moreover, the dynamic behavior calculated for MCY water gives a satisfactory picture on both translational and rotational motions in water, including reasonable agreement of diffusion coefficient with experimental datum.
Keywords
Affiliated Institutions
Related Publications
Molecular dynamics simulations at constant pressure and/or temperature
In the molecular dynamics simulation method for fluids, the equations of motion for a collection of particles in a fixed volume are solved numerically. The energy, volume, and n...
A molecular dynamics method for simulations in the canonical ensemble
A molecular dynamics simulation method which can generate configurations belonging to the canonical (T, V, N) ensemble or the constant temperature constant pressure (T, P, N) en...
Ensemble Dependence of Fluctuations with Application to Machine Computations
The standard theory of fluctuations in thermodynamic variables in various ensembles is generalized to nonthermodynamic variables: e.g., the mean-square fluctuations of the kinet...
Comparison of simple potential functions for simulating liquid water
Classical Monte Carlo simulations have been carried out for liquid water in the NPT ensemble at 25 °C and 1 atm using six of the simpler intermolecular potential functions for t...
<i>Ab initio</i>molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-tem...
Publication Info
- Year
- 1983
- Type
- article
- Volume
- 78
- Issue
- 5
- Pages
- 2626-2634
- Citations
- 70
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.445020