Abstract
Preface 1 Overview of Learning Systems 1.1 What is a Learning System? 1.2 Motivation for Building Learning Systems 1.3 Types of Practical Empirical Learning Systems 1.3.1 Common Theme: The Classification Model 1.3.2 Let the Data Speak 1.4 What's New in Learning Methods 1.4.1 The Impact of New Technology 1.5 Outline of the Book 1.6 Bibliographical and Historical Remarks 2 How to Estimate the True Performance of a Learning System 2.1 The Importance of Unbiased Error Rate Estimation 2.2. What is an Error? 2.2.1 Costs and Risks 2.3 Apparent Error Rate Estimates 2.4 Too Good to Be True: Overspecialization 2.5 True Error Rate Estimation 2.5.1 The Idealized Model for Unlimited Samples 2.5.2 Train-and Test Error Rate Estimation 2.5.3 Resampling Techniques 2.5.4 Finding the Right Complexity Fit 2.6 Getting the Most Out of the Data 2.7 Classifier Complexity and Feature Dimensionality 2.7.1 Expected Patterns of Classifier Behavior 2.8 What Can Go Wrong? 2.8.1 Poor Features, Data Errors, and Mislabeled Classes 2.8.2 Unrepresentative Samples 2.9 How Close to the Truth? 2.10 Common Mistakes in Performance Analysis 2.11 Bibliographical and Historical Remarks 3 Statistical Pattern Recognition 3.1 Introduction and Overview 3.2 A Few Sample Applications 3.3 Bayesian Classifiers 3.3.1 Direct Application of the Bayes Rule 3.4 Linear Discriminants 3.4.1 The Normality Assumption and Discriminant Functions 3.4.2 Logistic Regression 3.5 Nearest Neighbor Methods 3.6 Feature Selection 3.7 Error Rate Analysis 3.8 Bibliographical and Historical Remarks 4 Neural Nets 4.1 Introduction and Overview 4.2 Perceptrons 4.2.1 Least Mean Square Learning Systems 4.2.2 How Good Is a Linear Separation Network? 4.3 Multilayer Neural Networks 4.3.1 Back-Propagation 4.3.2 The Practical Application of Back-Propagation 4.4 Error Rate and Complexity Fit Estimation 4.5 Improving on Standard Back-Propagation 4.6 Bibliographical and Historical Remarks 5 Machine Learning: Easily Understood Decision Rules 5.1 Introduction and Overview 5.2 Decision Trees 5.2.1 Finding the Perfect Tree 5.2.2 The Incredible Shrinking Tree 5.2.3 Limitations of Tree Induction Methods 5.3 Rule Induction 5.3.1 Predictive Value Maximization 5.4 Bibliographical and Historical Remarks 6 Which Technique is Best? 6.1 What's Important in Choosing a Classifier? 6.1.1 Prediction Accuracy 6.1.2 Speed of Learning and Classification 6.1.3 Explanation and Insight 6.2 So, How Do I Choose a Learning System? 6.3 Variations on the Standard Problem 6.3.1 Missing Data 6.3.2 Incremental Learning 6.4 Future Prospects for Improved Learning Methods 6.5 Bibliographical and Historical Remarks 7 Expert Systems 7.1 Introduction and Overview 7.1.1 Why Build Expert Systems? New vs. Old Knowledge 7.2 Estimating Error Rates for Expert Systems 7.3 Complexity of Knowledge Bases 7.3.1 How Many Rules Are Too Many? 7.4 Knowledge Base Example 7.5 Empirical Analysis of Knowledge Bases 7.6 Future: Combined Learning and Expert Systems 7.7 Bibliographical and Historical Remarks References Author Index Subject Index
Keywords
Affiliated Institutions
Related Publications
Advances in kernel methods: support vector learning
Introduction to support vector learning roadmap. Part 1 Theory: three remarks on the support vector method of function estimation, Vladimir Vapnik generalization performance of ...
Rank & Sort Loss for Object Detection and Instance Segmentation
We propose Rank & Sort (RS) Loss, a ranking-based loss function to train deep object detection and instance segmentation methods (i.e. visual detectors). RS Loss supervises the ...
On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes
We compare discriminative and generative learning as typied by logistic regression and naive Bayes. We show, contrary to a widelyheld belief that discriminative classiers are al...
Bootstrap Techniques for Error Estimation
The design of a pattern recognition system requires careful attention to error estimation. The error rate is the most important descriptor of a classifier's performance. The com...
Neural Architecture Search: A Survey
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspe...
Publication Info
- Year
- 1991
- Type
- book
- Citations
- 905
- Access
- Closed