Abstract
Computational models of the human stereo system can provide insight into general information processing constraints that apply to any stereo system, either artificial or biological. In 1977 Marr and Poggio proposed one such computational model, which was characterized as matching certain feature points in difference-of-Gaussian filtered images and using the information obtained by matching coarser resolution representations to restrict the search space for matching finer resolution representations. An implementation of the algorithm and its testing on a range of images was reported in 1980. Since then a number of psychophysical experiments have suggested possible refinements to the model and modifications to the algorithm. As well, recent computational experiments applying the algorithm to a variety of natural images, especially aerial photographs, have led to a number of modifications. In this paper, we present a version of the Marr-Poggio-Grimson algorithm that embodies these modifications, and we illustrate its performance on a series of natural images.
Keywords
Affiliated Institutions
Related Publications
Example-based super-resolution
We call methods for achieving high-resolution enlargements of pixel-based images super-resolution algorithms. Many applications in graphics or image processing could benefit fro...
SwinIR: Image Restoration Using Swin Transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). W...
Image and video upscaling from local self-examples
We propose a new high-quality and efficient single-image upscaling technique that extends existing example-based super-resolution frameworks. In our approach we do not rely on a...
Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior
This paper proposes a framework for single-image super-resolution. The underlying idea is to learn a map from input low-resolution images to target high-resolution images based ...
Fast Image Super-Resolution Based on In-Place Example Regression
We propose a fast regression model for practical single image super-resolution based on in-place examples, by leveraging two fundamental super-resolution approaches- learning fr...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- PAMI-7
- Issue
- 1
- Pages
- 17-34
- Citations
- 530
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tpami.1985.4767615