Abstract

Abstract Following an earlier proposal to evaluate electron repulsion integrals over Gaussian basis functions by a numerical quadrature based on a set of orthogonal polynomials (Rys polynomials), a computational procedure is outlined for efficient evaluation of the two‐dimensional integrals I x , I y , and I z . Compact recurrence formulas for the integrals make the method particularly fitted to handle high‐angular‐momentum basis functions. The technique has been implemented in the HONDO molecular orbital program.

Keywords

ComputationQuadrature (astronomy)Basis functionBasis (linear algebra)Slater integralsGaussianAngular momentumGauss–Kronrod quadrature formulaGauss–Jacobi quadratureOrder of integration (calculus)Trigonometric integralGaussian quadratureNumerical integrationSet (abstract data type)MathematicsApplied mathematicsComputer scienceMathematical analysisPhysicsAlgorithmClassical mechanicsNyström methodQuantum mechanicsIntegral equationGeometryOptics

Affiliated Institutions

Related Publications

Publication Info

Year
1983
Type
article
Volume
4
Issue
2
Pages
154-157
Citations
243
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

243
OpenAlex

Cite This

J. Rys, Michel Dupuis, Harry F. King (1983). Computation of electron repulsion integrals using the rys quadrature method. Journal of Computational Chemistry , 4 (2) , 154-157. https://doi.org/10.1002/jcc.540040206

Identifiers

DOI
10.1002/jcc.540040206