Comprehensive Characterization of Cancer Driver Genes and Mutations

Matthew H. Bailey , Collin Tokheim , Eduard Porta‐Pardo , Matthew H. Bailey , Collin Tokheim , Eduard Porta‐Pardo , Sohini Sengupta , Denis Bertrand , Amila Weerasinghe , Antonio Colaprico , Michael C. Wendl , Jaegil Kim , Brendan Reardon , Patrick Kwok‐Shing Ng , Kang Jin Jeong , Song Cao , Zixing Wang , Galen F. Gao , Qingsong Gao , Fang Wang , Eric Minwei Liu , Loris Mularoni , Carlota Rubio-Pérez , Niranjan Nagarajan , Isidro Cortés‐Ciriano , Daniel Cui Zhou , Wen-Wei Liang , Julian M. Hess , Venkata Yellapantula , David Tamborero , Abel González-Pérez , Chayaporn Suphavilai , Jia Yu Ko , Ekta Khurana , Peter J. Park , Eliezer M. Van Allen , Han Liang , Michael S. Lawrence , Adam Godzik , Núria López-Bigas , Joshua M. Stuart , David A. Wheeler , Gad Getz , Ken Chen , Alexander J. Lazar , Gordon B. Mills , Rachel Karchin , Li Ding , Rory Johnson , John A. Demchok , Ina Felau , Melpomeni Kasapi , Martin L. Ferguson , Carolyn M. Hutter , Heidi J. Sofia , Roy Tarnuzzer , Linghua Wang , Liming Yang , Jean C. Zenklusen , Jiashan Zhang , Sudha Chudamani , Jia Liu , Laxmi Lolla , Rashi Naresh , Todd Pihl , Qiang Sun , Yunhu Wan , Ye Wu , Juok Cho , Timothy Defreitas , Scott Frazer , Nils Gehlenborg , Gad Getz , David I. Heiman , Jaegil Kim , Michael S. Lawrence , Pei Lin , Thomas J. Giordano , Michael S. Noble , Gordon Saksena , Doug Voet , Hailei Zhang , Brady Bernard , Nyasha Chambwe , Varsha Dhankani , Theo Knijnenburg , Roger Kramer , Kalle Leinonen , Yuexin Liu , Michael Miller , Sheila M. Reynolds , Ilya Shmulevich , Vésteinn Thórsson , Wei Zhang , Rehan Akbani , Bradley M. Broom , Apurva M. Hegde , Zhenlin Ju , Rupa S. Kanchi , Anil Korkut , Jun Li , Han Liang , Shiyun Ling
2018 Cell 2,368 citations

Abstract

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.

Keywords

BiologyGeneGeneticsCancerComputational biologyMutation

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
article
Volume
173
Issue
2
Pages
371-385.e18
Citations
2368
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2368
OpenAlex

Cite This

Matthew H. Bailey, Collin Tokheim, Eduard Porta‐Pardo et al. (2018). Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell , 173 (2) , 371-385.e18. https://doi.org/10.1016/j.cell.2018.02.060

Identifiers

DOI
10.1016/j.cell.2018.02.060