Abstract

We propose a new method for model selection and model fitting in multivariate nonparametric regression models, in the framework of smoothing spline ANOVA. The “COSSO ” is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditional smoothing spline method. The COSSO provides a unified framework for several recent proposals for model selection in linear models and smoothing spline ANOVA models. Theoretical properties, such as the existence and the rate of convergence of the COSSO estimator, are studied. In the special case of a tensor product design with periodic functions, a detailed analysis reveals that the COSSO does model selection by applying a novel soft thresholding type operation to the function components. We give an equivalent formulation of the COSSO estimator which leads naturally to an iterative algorithm. We compare the COSSO with MARS, a popular method that builds functional ANOVA models, in simulations and real examples. The COSSO method can be extended to classification problems and we compare its performance with those of a number of machine learning algorithms on real datasets. The COSSO gives very competitive performance in these studies. 1. Introduction. Consider

Keywords

MathematicsSmoothingSmoothing splineEstimatorNonparametric statisticsNonparametric regressionModel selectionSpline (mechanical)Additive modelMathematical optimizationAlgorithmApplied mathematicsStatisticsSpline interpolation

Affiliated Institutions

Related Publications

Publication Info

Year
2006
Type
article
Volume
34
Issue
5
Citations
563
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

563
OpenAlex

Cite This

Yi Lin, Hao Helen Zhang (2006). Component selection and smoothing in multivariate nonparametric regression. The Annals of Statistics , 34 (5) . https://doi.org/10.1214/009053606000000722

Identifiers

DOI
10.1214/009053606000000722