Abstract
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing 'optimal segmentation'. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.
Keywords
Affiliated Institutions
Related Publications
Discovering objects and their location in images
We seek to discover the object categories depicted in a set of unlabelled images. We achieve this using a model developed in the statistical text literature: probabilistic Laten...
Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set
The application of the convolutional neural network has shown to greatly improve the accuracy of building extraction from remote sensing imagery. In this paper, we created and m...
Image Segmentation in Video Sequences: A Probabilistic Approach
"Background subtraction" is an old technique for finding moving objects in a video sequence for example, cars driving on a freeway. The idea is that subtracting the current imag...
Learning Hierarchical Features for Scene Labeling
Scene labeling consists of labeling each pixel in an image with the category of the object it belongs to. We propose a method that uses a multiscale convolutional network traine...
Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization
We present a stochastic clustering algorithm which uses pairwise similarity of elements and show how it can be used to address various problems in computer vision, including the...
Publication Info
- Year
- 2014
- Type
- article
- Volume
- 96
- Pages
- 67-75
- Citations
- 244
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/j.isprsjprs.2014.07.002