Abstract
The relationship between co-integration and error correction models, first suggested in Granger (1981), is here extended and used to develop estimation procedures, tests, and empirical examples. If each element of a vector of time series x first achieves stationarity after differencing, but a linear combination a'x is already stationary, the time series x are said to be co-integrated with co-integrating vector a. There may be several such co-integrating vectors so that a becomes a matrix. Interpreting a'x,= 0 as a long run equilibrium, co-integration implies that deviations from equilibrium are stationary, with finite variance, even though the series themselves are nonstationary and have infinite variance. The paper presents a representation theorem based on Granger (1983), which connects the moving average, autoregressive, and error correction representations for co-integrated systems. A vector autoregression in differenced variables is incompatible with these representations. Estimation of these models is discussed and a simple but asymptotically efficient two-step estimator is proposed. Testing for co-integration combines the problems of unit root tests and tests with parameters unidentified under the null. Seven statistics are formulated and analyzed. The critical values of these statistics are calculated based on a Monte Carlo simulation. Using these critical values, the power properties of the tests are examined and one test procedure is recommended for application. In a series of examples it is found that consumption and income are co-integrated, wages and prices are not, short and long interest rates are, and nominal GNP is co-integrated with M2, but not M1, M3, or aggregate liquid assets.
Keywords
Affiliated Institutions
Related Publications
Bootstrap Methods: Another Look at the Jackknife
We discuss the following problem: given a random sample $\\mathbf{X} = (X_1, X_2, \\cdots, X_n)$ from an unknown probability distribution $F$, estimate the sampling distribution...
Generalized Collinearity Diagnostics
Abstract Working in the context of the linear model y = Xβ + ε, we generalize the concept of variance inflation as a measure of collinearity to a subset of parameters in β (deno...
How Much Should We Trust Differences-In-Differences Estimates?
Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors...
Deep High-Resolution Representation Learning for Visual Recognition
High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-...
Evaluating Structural Equation Models with Unobservable Variables and Measurement Error
The statistical tests used in the analysis of structural equation models with unobservable variables and measurement error are examined. A drawback of the commonly applied chi s...
Publication Info
- Year
- 1987
- Type
- article
- Volume
- 55
- Issue
- 2
- Pages
- 251-251
- Citations
- 31371
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.2307/1913236