Abstract

Drought is one of the most severe abiotic stresses limiting agricultural productivity and threatening global food security. As the central organelle responsible for photosynthesis and stress perception, the chloroplast is highly sensitive to drought, and its structural and functional stability directly determines plant adaptability. Recent studies have revealed that chloroplasts undergo pronounced ultrastructural alterations under drought stress, including thylakoid membrane shrinkage, disorganization of grana stacks, and accumulation of reactive oxygen species (ROS). Excessive ROS production causes oxidative damage to lipids, proteins, and nucleic acids, whereas moderate ROS levels act as retrograde signals to regulate nuclear gene expression. In parallel, calcium (Ca2+) oscillations and retrograde signaling pathways—such as those mediated by GENOMES UNCOUPLED PROTEIN1 (GUN), 3′-phosphoadenosine-5′-phosphate (PAP), and Methylerythritol cyclodiphosphate (MecPP)—integrate chloroplast-derived stress cues with nuclear responses. To counteract drought-induced damage, plants activate a series of antioxidant systems—both enzymatic (Superoxide Dismutase (SOD), Ascorbate Peroxidase (APX), Catalase (CAT)) and non-enzymatic (Ascorbic Acid (ASA), (Glutathione) GSH, tocopherols, carotenoids)—along with protective proteins such as fibrillins (FBNs) and WHIRLYs that stabilize thylakoid and membrane structures. In addition, autophagy and plastid degradation pathways selectively remove severely damaged chloroplasts to maintain cellular homeostasis. Exogenous substances, including melatonin, 5-aminolevulinic acid (ALA), and Zinc oxide (ZnO) nanoparticles, have also been shown to enhance chloroplast stability and antioxidant capacity under drought stress. In this review, we discuss the structural and functional changes in chloroplasts, signaling networks, and protective repair mechanisms under drought stress. Furthermore, we highlight future research prospects for enhancing plant stress resilience through multi-omics integration, application of functional regulators, and molecular design breeding.

Affiliated Institutions

Related Publications

Publication Info

Year
2025
Type
article
Volume
26
Issue
24
Pages
11872-11872
Citations
0
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

0
OpenAlex

Cite This

Sanjiao Wang, Qinghua Ma, Chen Li et al. (2025). Chloroplast Responses to Drought: Integrative Mechanisms and Mitigation Strategies. International Journal of Molecular Sciences , 26 (24) , 11872-11872. https://doi.org/10.3390/ijms262411872

Identifiers

DOI
10.3390/ijms262411872