Abstract
This paper addresses the problem of learning over-complete dictionaries for the coupled feature spaces, where the learned dictionaries also reflect the relationship between the two spaces. A Bayesian method using a beta process prior is applied to learn the over-complete dictionaries. Compared to previous couple feature spaces dictionary learning algorithms, our algorithm not only provides dictionaries that customized to each feature space, but also adds more consistent and accurate mapping between the two feature spaces. This is due to the unique property of the beta process model that the sparse representation can be decomposed to values and dictionary atom indicators. The proposed algorithm is able to learn sparse representations that correspond to the same dictionary atoms with the same sparsity but different values in coupled feature spaces, thus bringing consistent and accurate mapping between coupled feature spaces. Another advantage of the proposed method is that the number of dictionary atoms and their relative importance may be inferred non-parametrically. We compare the proposed approach to several state-of-the-art dictionary learning methods by applying this method to single image super-resolution. The experimental results show that dictionaries learned by our method produces the best super-resolution results compared to other state-of-the-art methods.
Keywords
Affiliated Institutions
Related Publications
Image Super-Resolution Via Sparse Representation
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-...
Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior
This paper proposes a framework for single-image super-resolution. The underlying idea is to learn a map from input low-resolution images to target high-resolution images based ...
Fast and accurate image upscaling with super-resolution forests
The aim of single image super-resolution is to reconstruct a high-resolution image from a single low-resolution input. Although the task is ill-posed it can be seen as finding a...
Unsupervised Feature Learning via Non-parametric Instance Discrimination
Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether...
Image Super-Resolution Using Deep Convolutional Networks
We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is...
Publication Info
- Year
- 2013
- Type
- article
- Pages
- 345-352
- Citations
- 179
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.2013.51