Band structure and its temperature dependence for type-III<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi><mml:mi mathvariant="normal">g</mml:mi><mml:mi mathvariant="normal">T</mml:mi><mml:mi mathvariant="normal">e</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">H</mml:mi><mml:mi mathvariant="normal">g</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi>−</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Cd</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">Te</mml:mi></mml:math>superlattices and their semimetal constituent

2000 Physical review. B, Condensed matter 85 citations

Abstract

Intersubband transitions in ${\mathrm{H}\mathrm{g}\mathrm{T}\mathrm{e}/\mathrm{H}\mathrm{g}}_{1\ensuremath{-}x}{\mathrm{Cd}}_{x}\mathrm{Te}$ superlattices and their dependence on temperature have been investigated for a large number of superlattices with widely different parameters. It has been shown by means of the envelope function approximation using the full $8\ifmmode\times\else\texttimes\fi{}8$ Kane Hamiltonian, that the valence band offset is primarily responsible for the separation between the $H1\ensuremath{-}E1$ and $L1\ensuremath{-}E1$ intersubband transition energies of semiconducting ${\mathrm{H}\mathrm{g}\mathrm{T}\mathrm{e}/\mathrm{H}\mathrm{g}}_{1\ensuremath{-}x}{\mathrm{Cd}}_{x}\mathrm{Te}$ superlattices with a normal band structure. To a good approximation, all other relevant superlattice parameters have little or no effect on this energy difference. This leads to an unequivocal determination of the valence band offset between HgTe and CdTe \ensuremath{\Lambda} which is $570\ifmmode\pm\else\textpm\fi{}60\mathrm{meV}$ at 5 K for both the (001) and the $(112)\mathrm{B}$ orientations. The temperature dependence of both intersubband transition energies can only be explained by the following conditions: \ensuremath{\Lambda} is also temperature dependent as expressed by $d\ensuremath{\Lambda}/dT=\ensuremath{-}0.40\ifmmode\pm\else\textpm\fi{}0.04\mathrm{m}\mathrm{e}\mathrm{V}/\mathrm{K};$ the anisotropic heavy hole effective mass has a significant temperature dependence; and ${E}_{g}(\mathrm{HgTe},300\mathrm{K})=\ensuremath{-}160\ifmmode\pm\else\textpm\fi{}5\mathrm{meV}$ which is appreciably lower than the extrapolated values found in the literature.

Keywords

SuperlatticePhysicsValence (chemistry)Condensed matter physicsCrystallographyQuantum mechanics

Affiliated Institutions

Related Publications

Publication Info

Year
2000
Type
article
Volume
62
Issue
15
Pages
10353-10363
Citations
85
Access
Closed

External Links

Citation Metrics

85
OpenAlex

Cite This

C. R. Becker, V. Latussek, A. Pfeuffer-Jeschke et al. (2000). Band structure and its temperature dependence for type-III<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi><mml:mi mathvariant="normal">g</mml:mi><mml:mi mathvariant="normal">T</mml:mi><mml:mi mathvariant="normal">e</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">H</mml:mi><mml:mi mathvariant="normal">g</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi>−</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Cd</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">Te</mml:mi></mml:math>superlattices and their semimetal constituent. Physical review. B, Condensed matter , 62 (15) , 10353-10363. https://doi.org/10.1103/physrevb.62.10353

Identifiers

DOI
10.1103/physrevb.62.10353