Abstract

This study develops an automatic dispatch system for quadrotor UAVs that integrates air-writing gesture recognition with a graphical user interface (GUI). The DJI RoboMaster quadrotor UAV (DJI, Shenzhen, China) was employed as the experimental platform, combined with an ESP32 microcontroller (Espressif Systems, Shanghai, China) and the RoboMaster SDK (version 3.0). On the Python (version 3.12.7) platform, a GUI was implemented using Tkinter (version 8.6), allowing users to input addresses or landmarks, which were then automatically converted into geographic coordinates and imported into Google Maps for route planning. The generated flight commands were transmitted to the UAV via a UDP socket, enabling remote autonomous flight. For gesture recognition, a Raspberry Pi integrated with the MediaPipe Hands module was used to capture 16 types of air-written flight commands in real time through a camera. The training samples were categorized into one-dimensional coordinates and two-dimensional images. In the one-dimensional case, X/Y axis coordinates were concatenated after data augmentation, interpolation, and normalization. In the two-dimensional case, three types of images were generated, namely font trajectory plots (T-plots), coordinate-axis plots (XY-plots), and composite plots combining the two (XYT-plots). To evaluate classification performance, several machine learning and deep learning architectures were employed, including a multi-layer perceptron (MLP), support vector machine (SVM), one-dimensional convolutional neural network (1D-CNN), and two-dimensional convolutional neural network (2D-CNN). The results demonstrated effective recognition accuracy across different models and sample formats, verifying the feasibility of the proposed air-writing trajectory framework for non-contact gesture-based UAV control. Furthermore, by combining gesture recognition with a GUI-based map planning interface, the system enhances the intuitiveness and convenience of UAV operation. Future extensions, such as incorporating aerial image object recognition, could extend the framework’s applications to scenarios including forest disaster management, vehicle license plate recognition, and air pollution monitoring.

Affiliated Institutions

Related Publications

Publication Info

Year
2025
Type
article
Volume
13
Issue
12
Pages
3984-3984
Citations
0
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

0
OpenAlex

Cite This

Pu-Sheng Tsai, Ter-Feng Wu, Y. D. Wang (2025). Automatic Quadrotor Dispatch Missions Based on Air-Writing Gesture Recognition. Processes , 13 (12) , 3984-3984. https://doi.org/10.3390/pr13123984

Identifiers

DOI
10.3390/pr13123984