Abstract

We consider the asymptotic behavior ofregression estimators that\nminimize the residual sum of squares plus a penalty proportional to\n$\\sum|\\beta_j|^{\\gamma}$. for some $\\gamma > 0$. These estimators include\nthe Lasso as a special case when $\\gamma = 1$. Under appropriate conditions, we\nshow that the limiting distributions can have positive probability mass at 0\nwhen the true value of the parameter is 0.We also consider asymptotics for\n“nearly singular” designs.

Keywords

MathematicsEstimatorLasso (programming language)Applied mathematicsType (biology)LimitingResidualLeast-squares function approximationAsymptotic distributionM-estimatorStatisticsAlgorithm

Related Publications

Robust Estimation of a Location Parameter

This paper contains a new approach toward a theory of robust estimation; it treats in detail the asymptotic theory of estimating a location parameter for contaminated normal dis...

1964 The Annals of Mathematical Statistics 6618 citations

Publication Info

Year
2000
Type
article
Volume
28
Issue
5
Citations
1312
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

1312
OpenAlex

Cite This

Wenjiang Fu, Keith Knight (2000). Asymptotics for lasso-type estimators. The Annals of Statistics , 28 (5) . https://doi.org/10.1214/aos/1015957397

Identifiers

DOI
10.1214/aos/1015957397