Abstract
A set of 146 well-established ionization potentials and electron affinities is presented. This set, referred to as the G2 ion test set, includes the 63 atoms and molecules whose ionization potentials and electron affinities were used to test Gaussian-2 (G2) theory [J. Chem. Phys. 94, 7221 (1991)] and 83 new atoms and molecules. It is hoped that this new test set combined with the recently published test set of enthalpies of neutral molecules [J. Chem. Phys. 106, 1063 (1997)] will provide a means for assessing and improving theoretical models. From an assessment of G2 and density functional theories on this test set, it is found that G2 theory is the most reliable method. It has an average absolute deviation of 0.06 eV for both ionization potentials and electron affinities. The two modified versions of G2 theory, G2(MP2,SVP) and G2(MP2) theory, have average absolute deviations of 0.08–0.09 eV for both ionization potentials and electron affinities. The hybrid B3LYP density functional method has the smallest average absolute deviation (0.18 eV) of the seven density functional methods tested for ionization potentials. The largest deviation for the density functional methods is for the ionization potential of CN (>1 eV). The BLYP density functional method has the smallest average absolute deviation (0.11 eV) of the seven density functional methods tested for electron affinities, while the BPW91, B3LYP, and B3PW91 methods also do quite well.
Keywords
Affiliated Institutions
Related Publications
Assessment of Modified Gaussian-2 (G2) and Density Functional Theories for Molecules Containing Third-Row Atoms Ga−Kr
The performance of G2(MP2) and G2(MP2,SVP) theories for molecules containing third-row nontransition elements Ga−Kr is assessed. The average absolute deviation from experiment f...
Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction
In an earlier paper [A. D. Becke, J. Chem. Phys. 96, 2155 (1992)], Kohn–Sham density-functional calculations of the total atomization energies of the 55 molecules of the Gaussia...
Density-functional thermochemistry. III. The role of exact exchange
Despite the remarkable thermochemical accuracy of Kohn–Sham density-functional theories with gradient corrections for exchange-correlation [see, for example, A. D. Becke, J. Che...
Density-functional thermochemistry. I. The effect of the exchange-only gradient correction
Previous work by the author on diatomic molecules and by others on polyatomic systems has revealed that Kohn–Sham density-functional theory with ‘‘gradient corrected’’ exchange-...
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is ...
Publication Info
- Year
- 1998
- Type
- article
- Volume
- 109
- Issue
- 1
- Pages
- 42-55
- Citations
- 567
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.476538