Abstract
Abstract A growing number of population genetic studies utilize nuclear DNA microsatellite data from museum specimens and noninvasive sources. Genotyping errors are elevated in these low quantity DNA sources, potentially compromising the power and accuracy of the data. The most conservative method for addressing this problem is effective, but requires extensive replication of individual genotypes. In search of a more efficient method, we developed a maximum-likelihood approach that minimizes errors by estimating genotype reliability and strategically directing replication at loci most likely to harbor errors. The model assumes that false and contaminant alleles can be removed from the dataset and that the allelic dropout rate is even across loci. Simulations demonstrate that the proposed method marks a vast improvement in efficiency while maintaining accuracy. When allelic dropout rates are low (0–30%), the reduction in the number of PCR replicates is typically 40–50%. The model is robust to moderate violations of the even dropout rate assumption. For datasets that contain false and contaminant alleles, a replication strategy is proposed. Our current model addresses only allelic dropout, the most prevalent source of genotyping error. However, the developed likelihood framework can incorporate additional error-generating processes as they become more clearly understood.
Keywords
Affiliated Institutions
Related Publications
Patterns of nuclear DNA degeneration over time — a case study in historic teeth samples
Abstract The amount of nuclear DNA extracted from teeth of 279 individual red fox Vulpes vulpes collected over a period spanning the last three decades was determined by quantit...
<scp>micro</scp>‐<scp>checker</scp>: software for identifying and correcting genotyping errors in microsatellite data
Abstract DNA degradation, low DNA concentrations and primer‐site mutations may result in the incorrect assignment of microsatellite genotypes, potentially biasing population gen...
Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies
Abstract We describe extensions to the method of Pritchard et al. for inferring population structure from multilocus genotype data. Most importantly, we develop methods that all...
Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications
Summary Restriction fragment length polymorphisms (RFLP) analysis using the Southern blot technique can be used to recognize copy number variation of variable number of tandem r...
Statistical confidence for likelihood‐based paternity inference in natural populations
Paternity inference using highly polymorphic codominant markers is becoming common in the study of natural populations. However, multiple males are often found to be genetically...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 160
- Issue
- 1
- Pages
- 357-366
- Citations
- 338
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/genetics/160.1.357