Abstract
The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach
Keywords
Affiliated Institutions
Related Publications
CODA: convergence diagnosis and output analysis for MCMC
[1st paragraph] At first sight, Bayesian inference with Markov Chain Monte Carlo (MCMC) appears to be straightforward. The user defines a full probability model, perhaps using o...
MCMC Methods for Multi-Response Generalized Linear Mixed Models: The<b>MCMCglmm</b><i>R</i>Package
Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in clo...
Latent Class Model Diagnosis
Summary. In many areas of medical research, such as psychiatry and gerontology, latent class variables are used to classify individuals into disease categories, often with the i...
Comparative Performance of Bayesian and AIC-Based Measures of Phylogenetic Model Uncertainty
Reversible-jump Markov chain Monte Carlo (RJ-MCMC) is a technique for simultaneously evaluating multiple related (but not necessarily nested) statistical models that has recentl...
Estimation of individual admixture: Analytical and study design considerations
Abstract The genome of an admixed individual represents a mixture of alleles from different ancestries. In the United States, the two largest minority groups, AfricanāAmericans ...
Publication Info
- Year
- 2010
- Type
- book
- Citations
- 188
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1201/9781584887218