Abstract
Numerous studies of the ionic conductivities in oxide-doped chalcogenaide glasses have shown the anomalous result that the ionic conductivity actually increases significantly (by more than a factor of 10 in some cases) by the initial addition of an oxide phase to a pure sulfide glass. After this initial sharp increase, the conductivity then monotonically decreases with further oxide addition. While this behavior is important to the application of these glasses for Li batteries, no definitive understanding of this behavior has been elucidated. To examine this effect further and more completely, the ionic conductivities of 0.5Li(2)S + 0.5[(1 - x)GeS(2) + xGeO(2)] glasses have been measured on disc-type bulk glasses. The ionic conductivity of the 0.5Li(2)S + 0.5GeS(2) (x = 0) glass was observed to increase from 4.3 x 10(-5) (Omega cm)(-1) to 1.5 x 10(-4) (Omega cm)(-1) while the activation energy decreased to 0.358 eV from 0.385 eV by the addition of 5 mol % of GeO(2). Further addition of GeO(2) monotonically decreased the conductivity and increased the activation energy. On the basis of our previous studies of the structure of this glass system, the Anderson and Stuart model was applied to explain the decrease in the activation energy and increase in the conductivity. It is suggested that the "doorway" radius between adjacent cation sites increases slightly (from approximately 0.29(+/-0.05) A to approximately 0.40(+/-0.05) A) with the addition of oxygen to the glass and is proposed to be the major cause in decreasing the activation energy and thereby increasing the conductivity. Further addition of oxides appears to contract the glass structure (and the doorway radius) leading to an increase in the conductivity activation energy and a decrease in the conductivity.
Keywords
Affiliated Institutions
Related Publications
Electrical conductivity in ionic complexes of poly(ethylene oxide)
Abstract The temperature dependence of d.c. conductivity of poly(ethylene oxide) complexes with sodium iodide and the thiocyanates of sodium, potassium and ammonium has been inv...
Oxidative Electrolyte Solvent Degradation in Lithium‐Ion Batteries: An In Situ Differential Electrochemical Mass Spectrometry Investigation
Differential electrochemical mass spectrometry (DEMS) was used to study the electrochemical decomposition of organic carbonate electrolyte solutions at practical lithium metal o...
Graphene−Silica Composite Thin Films as Transparent Conductors
Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiOx/silicon substrates by incorporation of individual graphene oxide she...
First‐Year <i>Wilkinson Microwave Anisotropy Probe</i> ( <i>WMAP</i> ) Observations: Preliminary Maps and Basic Results
We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error...
Localization and absorption of waves in a weakly dissipative disordered medium
The effect of a small imaginary part ${\ensuremath{\epsilon}}_{2}$ to the dielectric constant on the propagation of waves in a disordered medium near the Anderson localization t...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 110
- Issue
- 33
- Pages
- 16318-16325
- Citations
- 91
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/jp060670c