Abstract

Variational autoencoders provide a principled framework for learning deep\nlatent-variable models and corresponding inference models. In this work, we\nprovide an introduction to variational autoencoders and some important\nextensions.\n

Keywords

Latent variableInferenceArtificial intelligenceComputer scienceMachine learningDeep learningAutoencoderVariable (mathematics)Mathematics

Affiliated Institutions

Related Publications

Publication Info

Year
2019
Type
article
Volume
12
Issue
4
Pages
307-392
Citations
2194
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2194
OpenAlex
140
Influential
1795
CrossRef

Cite This

Diederik P. Kingma, Max Welling (2019). An Introduction to Variational Autoencoders. Foundations and TrendsĀ® in Machine Learning , 12 (4) , 307-392. https://doi.org/10.1561/2200000056

Identifiers

DOI
10.1561/2200000056
arXiv
1906.02691

Data Quality

Data completeness: 84%