Abstract
The method of calculation used in the present work is a modification of that used by Wigner and Seitz in their original calculations of the energies of metallic Li and Na. The main difference lies in an improved method for the calculation of the Fermi energy. In each polyhedral cell, the wave function of an electron is taken to be of the form ψk=[u0(r)+i(k·x)(v1(r)−u0(r))]exp [ik·x], where u0(r) and v1(r) are radial s and p functions, respectively, which depend only on the distance from the ion in the center of the cell. Both functions are determined explicitly from the differential equations, and the energy of the electron is expressed in terms of the boundary values of the wave function. Values of the Fermi energy, and of the total energy of each metal, are tabulated as a function of the lattice spacing. Calculated values of the lattice constants, heats of sublimation, and compressibilities are in fair agreement with experiment.
Keywords
Affiliated Institutions
Related Publications
Fermi Energy of Metallic Lithium
A boundary condition method is developed for deriving the coefficient ${E}_{2n}$ in the power series expansion of the energy of an electron of wave number $k$ moving in the latt...
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
Generalized gradient approximations (GGA’s) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang...
Correlation Energy of a Free Electron Gas
The limits of validity of the correlation-energy calculations in the regions of high density, low density, and actual metallic electron densities are discussed. Simple physical ...
Fermi surface of layered compounds and bulk charge density wave systems
A review is given of recent angle-resolved photoemission (ARPES) experiments and analyses on a series of layered charge density wave materials. Important aspects of ARPES are re...
First Direct Measurement of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mprescripts/><mml:none/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mmultiscripts></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>γ</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mmultiscripts><mml:mrow><mml:mi>Li</mml:mi></mml:mrow><mml:mprescripts/><mml:none/><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:mmultiscripts></mml:mrow></mml:mrow></mml:math>Cross Section at Big Bang Energies and the Primordial Lithium Problem
Recent observations of (6)Li in metal poor stars suggest a large production of this isotope during big bang nucleosynthesis (BBN). In standard BBN calculations, the (2)H(α,γ)(6)...
Publication Info
- Year
- 1938
- Type
- article
- Volume
- 6
- Issue
- 7
- Pages
- 367-371
- Citations
- 190
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.1750270