Abstract
This paper presents an application of recurrent networks for phone probability estimation in large vocabulary speech recognition. The need for efficient exploitation of context information is discussed; a role for which the recurrent net appears suitable. An overview of early developments of recurrent nets for phone recognition is given along with the more recent improvements that include their integration with Markov models. Recognition results are presented for the DARPA TIMIT and Resource Management tasks, and it is concluded that recurrent nets are competitive with traditional means for performing phone probability estimation.
Keywords
Affiliated Institutions
Related Publications
Exemplar-Based Sparse Representation Features: From TIMIT to LVCSR
The use of exemplar-based methods, such as support vector machines (SVMs), k-nearest neighbors (kNNs) and sparse representations (SRs), in speech recognition has thus far been l...
Boosting attribute and phone estimation accuracies with deep neural networks for detection-based speech recognition
Generation of high-precision sub-phonetic attribute (also known as phonological features) and phone lattices is a key frontend component for detection-based bottom-up speech rec...
An exploration of large vocabulary tools for small vocabulary phonetic recognition
While research in large vocabulary continuous speech recognition (LVCSR) has sparked the development of many state of the art research ideas, research in this domain suffers fro...
Improved phone recognition using Bayesian triphone models
A crucial issue in triphone based continuous speech recognition is the large number of models to be estimated against the limited availability of training data. This problem can...
Global optimization of a neural network-hidden Markov model hybrid
An original method for integrating artificial neural networks (ANN) with hidden Markov models (HMM) is proposed. ANNs are suitable for performing phonetic classification, wherea...
Publication Info
- Year
- 1994
- Type
- article
- Volume
- 5
- Issue
- 2
- Pages
- 298-305
- Citations
- 444
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/72.279192