Abstract

Consider a sequence of independent identically distributed (i.i.d.) random variables <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X_{l},X_{2}, \cdots, X_{n}</tex> and a distortion measure <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d(X_{i},X̂_{i})</tex> on the estimates <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X̂_{i}</tex> of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X_{i}</tex> . Two descriptions <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i(X)\in \{1,2, \cdots ,2^{nR_{1}\}</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j(X)\in \{1,2, \cdots,2^{nR_{2}\}</tex> are given of the sequence <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X=(X_{1}, X_{2}, \cdots ,X_{n})</tex> . From these two descriptions, three estimates <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(i(X)), X2(j(X))</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\hat{X}_{O}(i(X),j(X))</tex> are formed, with resulting expected distortions <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E \frac{1/n} \sum^{n}_{k=1} d(X_{k}, \hat{X}_{mk})=D_{m}, m=0,1,2.</tex> We find that the distortion constraints <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D_{0}, D_{1}, D_{2}</tex> are achievable if there exists a probability mass distribution <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p(x)p(\hat{x}_{1},\hat{x}_{2},\hat{x}_{0}|x)</tex> with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ed(X,\hat{x}_{m})\leq D_{m}</tex> such that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R_{1}&gt;I(X;\hat{X}_{1}),</tex> <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R_{2}&gt;I(X;\hat{X}_{2}),</tex> where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I(\cdot)</tex> denotes Shannon mutual information. These rates are shown to be optimal for deterministic distortion measures.

Keywords

Computer science

Affiliated Institutions

Related Publications

Asymptotically optimal block quantization

In 1948 W. R. Bennett used a companding model for nonuniform quantization and proposed the formula <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3...

1979 IEEE Transactions on Information Theory 868 citations

Publication Info

Year
1982
Type
article
Volume
28
Issue
6
Pages
851-857
Citations
652
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

652
OpenAlex

Cite This

Abbas El Gamal, Thomas M. Cover (1982). Achievable rates for multiple descriptions. IEEE Transactions on Information Theory , 28 (6) , 851-857. https://doi.org/10.1109/tit.1982.1056588

Identifiers

DOI
10.1109/tit.1982.1056588