Abstract
The potential energy function of the N2 molecule is calculated using the internally contracted multireference CI method (CMRCI) and complete active space SCF (CASSCF) reference wave functions. A full CI calculation in a DZP basis set is used to estimate the errors associated with the CMRCI wave function. The dependence of the computed spectroscopic constants and the dissociation energy on the basis set is also investigated. Uncontracted and segmented basis sets are compared with ANO (atomic natural orbital) and other generally contracted basis sets. It is found that the energy optimized ‘‘correlation consistent’’ basis sets of Dunning yield substantially better results than ANO basis sets of the same size. In the largest calculations, which included up to h type basis functions and also accounted for core–core and core–valence correlation effects, the remaining errors are 0. 0003 Å, 8 cm−1, and 0.7 kcal/mol for re, ωe, and De, respectively. The inclusion of an i type basis function reduces the error in the dissociation energy to 0.3 kcal/mol (0.013 eV).
Keywords
Affiliated Institutions
Related Publications
Polarization CI wavefunctions: the valence states of the NH radical
The polarization configuration interaction (POL–CI) wavefunction is described. Calculations are reported for the X 3Σ−, a 1Δ, b 1Σ+, A 3Π, and c 1Π states of the NH molecules in...
Non-empirical pseudopotentials for molecular calculations
Abstract The ability of the atomic pseudopotential proposed in Part I to reproduce the all-electron basis set extension and correlation effects in molecules has been tested on F...
<i>Ab initio</i> effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ...
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials for molecular calculations. II. All-electron comparisons and modifications of the procedure
Recently methods have been developed [L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976)] to replace the core electrons of atoms by ab initio effective co...
Self-Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2
Methods of efficiently optimizing the orbitals of generalized valence bond (GVB) wavefunctions are discussed and applied to LiH, BH, H3, H2O, C6H6, and O2. The strong orthogonal...
Publication Info
- Year
- 1991
- Type
- article
- Volume
- 94
- Issue
- 2
- Pages
- 1264-1270
- Citations
- 86
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.460696