Abstract
Currently available methods for model selection used in phylogenetic analysis are based on an initial fixed-tree topology. Once a model is picked based on this topology, a rigorous search of the tree space is run under that model to find the maximum-likelihood estimate of the tree (topology and branch lengths) and the maximum-likelihood estimates of the model parameters. In this paper, we propose two extensions to the decision-theoretic (DT) approach that relax the fixed-topology restriction. We also relax the fixed-topology restriction for the Bayesian information criterion (BIC) and the Akaike information criterion (AIC) methods. We compare the performance of the different methods (the relaxed, restricted, and the likelihood-ratio test [LRT]) using simulated data. This comparison is done by evaluating the relative complexity of the models resulting from each method and by comparing the performance of the chosen models in estimating the true tree. We also compare the methods relative to one another by measuring the closeness of the estimated trees corresponding to the different chosen models under these methods. We show that varying the topology does not have a major impact on model choice. We also show that the outcome of the two proposed extensions is identical and is comparable to that of the BIC, Extended-BIC, and DT. Hence, using the simpler methods in choosing a model for analyzing the data is more computationally feasible, with results comparable to the more computationally intensive methods. Another outcome of this study is that earlier conclusions about the DT approach are reinforced. That is, LRT, Extended-AIC, and AIC result in more complicated models that do not contribute to the performance of the phylogenetic inference, yet cause a significant increase in the time required for data analysis.
Keywords
Affiliated Institutions
Related Publications
Model Selection and Akaike's Information Criterion (AIC): The General Theory and its Analytical Extensions
During the last fifteen years, Akaike's entropy-based Information Criterion (AIC) has had a fundamental impact in statistical model evaluation problems. This paper studies the g...
Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests
Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental conc...
jModelTest: Phylogenetic Model Averaging
jModelTest is a new program for the statistical selection of models of nucleotide substitution based on "Phyml" (Guindon and Gascuel 2003. A simple, fast, and accurate algorithm...
Model Selection in Phylogenetics
▪ Abstract Investigation into model selection has a long history in the statistical literature. As model-based approaches begin dominating systematic biology, increased attentio...
Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses
In this paper, we develop a classical approach to model selection. Using the Kullback-Leibler Information Criterion to measure the closeness of a model to the truth, we propose ...
Publication Info
- Year
- 2004
- Type
- article
- Volume
- 22
- Issue
- 3
- Pages
- 691-703
- Citations
- 86
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/molbev/msi050