Abstract
An algorithm for computing discrete logarithms over GF <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(p^{2})</tex> , where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</tex> is a prime, in subexponential time is described. The algorithm is similar to the Merkle-Adleman algorithm for computing logarithms over GF <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(p)</tex> , but it uses quadratic fields as the appropriate algebraic structure. It also makes use of the idea of a virtual spanning set due to Hellman and Reyneri for computing discrete logarithms over GF <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(p^{m})</tex> , for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</tex> growing and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</tex> fixed.
Keywords
Affiliated Institutions
Related Publications
An improved algorithm for computing logarithms overGF(p)and its cryptographic significance (Corresp.)
A cryptographic system is described which is secure if and only if computing logarithms over <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1...
Fast evaluation of logarithms in fields of characteristic two
A method for determining logarithms in GF <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(2^{n})</tex> is presented. Its asymptot...
On the minimum distance of some quadratic residue codes (Corresp.)
We find the minimum distances of the binary <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(113, 57)</tex> , and ternary <tex xml...
Maximum distanceq-nary codes
A <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> -nary error-correcting code with <tex xmlns:mml="http://www.w3.org/1998/...
Asymptotically optimal block quantization
In 1948 W. R. Bennett used a companding model for nonuniform quantization and proposed the formula <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- 31
- Issue
- 4
- Pages
- 473-481
- Citations
- 56
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tit.1985.1057075