Abstract
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative, produces a sequence of matrices $\\{\\boldsymbol{X}^k,\\boldsymbol{Y}^k\\}$, and at each step mainly performs a soft-thresholding operation on the singular values of the matrix $\\boldsymbol{Y}^k$. There are two remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates $\\{\\boldsymbol{X}^k\\}$ is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On the theoretical side, we provide a convergence analysis showing that the sequence of iterates converges. On the practical side, we provide numerical examples in which $1,000\\times1,000$ matrices are recovered in less than a minute on a modest desktop computer. We also demonstrate that our approach is amenable to very large scale problems by recovering matrices of rank about 10 with nearly a billion unknowns from just about 0.4% of their sampled entries. Our methods are connected with the recent literature on linearized Bregman iterations for $\\ell_1$ minimization, and we develop a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms. Read More: http://epubs.siam.org/doi/abs/10.1137/080738970
Keywords
Related Publications
The Power of Convex Relaxation: Near-Optimal Matrix Completion
This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a ...
Interior-Point Method for Nuclear Norm Approximation with Application to System Identification
The nuclear norm (sum of singular values) of a matrix is often used in convex heuristics for rank minimization problems in control, signal processing, and statistics. Such heuri...
Matrix Completion With Noise
On the heels of compressed sensing, a new field \nhas very recently emerged. This field addresses a broad range \nof problems of significant practical interest, namely, ...
Weighted Nuclear Norm Minimization with Application to Image Denoising
As a convex relaxation of the low rank matrix factorization problem, the nuclear norm minimization has been attracting significant research interest in recent years. The standar...
Rank-Sparsity Incoherence for Matrix Decomposition
Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-...
Publication Info
- Year
- 2010
- Type
- article
- Volume
- 20
- Issue
- 4
- Pages
- 1956-1982
- Citations
- 5710
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1137/080738970