Abstract
Continuous measurements are often dichotomized for classification of subjects. This paper evaluates two procedures for determining a best cutpoint for a continuous prognostic factor with right censored outcome data. One procedure selects the cutpoint that minimizes the significance level of a logrank test with comparison of the two groups defined by the cutpoint. This procedure adjusts the significance level for maximal selection. The other procedure uses a cross-validation approach. The latter easily extends to accommodate multiple other prognostic factors. We compare the methods in terms of statistical power and bias in estimation of the true relative risk associated with the prognostic factor. Both procedures produce approximately the correct type I error rate. Use of a maximally selected cutpoint without adjustment of the significance level, however, results in a substantially elevated type I error rate. The cross-validation procedure unbiasedly estimated the relative risk under the null hypothesis while the procedure based on the maximally selected test resulted in an upward bias. When the relative risk for the two groups defined by the covariate and true changepoint was small, the cross-validation procedure provided greater power than the maximally selected test. The cross-validation based estimate of relative risk was unbiased while the procedure based on the maximally selected test produced a biased estimate. As the true relative risk increased, the power of the maximally selected test was about 10 per cent greater than the power obtained using cross-validation. The maximally selected test overestimated the relative risk by about 10 per cent. The cross-validation procedure produced at most 5 per cent underestimation of the true relative risk. Finally, we report the effect of dichotomizing a continuous non-linear relationship between covariate and risk. We compare using a linear proportional hazard model to using models based on optimally selected cutpoints. Our simulation study indicates that we can have a substantial loss of statistical power when we use cutpoint models in cases where there is a continuous relationship between covariate and risk.
Keywords
Affiliated Institutions
Related Publications
Confidence intervals for the effect of a prognostic factor after selection of an ‘optimal’ cutpoint
Abstract When investigating the effects of potential prognostic or risk factors that have been measured on a quantitative scale, values of these factors are often categorized in...
On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics
A new approach to problems of multiple significance testing was presented in Benjamini and Hochberg (1995), which calls for controlling the expected ratio of the number of erron...
Screening large-scale association study data: exploiting interactions using random forests
Abstract Background Genome-wide association studies for complex diseases will produce genotypes on hundreds of thousands of single nucleotide polymorphisms (SNPs). A logical fir...
Meta-Analysis: A Comparison of Approaches
Preface Introduction Theory: Statistical Methods of Meta-Analysis Effect Sizes Families of Effect Sizes The r Family: Correlation Coefficients as Effect Sizes The d Family: Stan...
A Simple Sequentially Rejective Multiple Test Procedure
This paper presents a simple and widely ap- plicable multiple test procedure of the sequentially rejective type, i.e. hypotheses are rejected one at a tine until no further reje...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 15
- Issue
- 20
- Pages
- 2203-2213
- Citations
- 143
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/(sici)1097-0258(19961030)15:20<2203::aid-sim357>3.0.co;2-g