Abstract
In human platelets stimulated by thrombin and collagen, diacylglycerol is rapidly produced from phosphatidylinositol. Concurrently, an endogenous protein having a molecular weight of about 40,000 (40K protein) is phosphorylated, and serotonin is released. These reactions are all inhibited by a prior treatment of platelets with prostaglandin E1, dibutyryl cyclic AMP, sodium nitroprusside, or with 8-bromo-cyclic GMP, which are known as potent inhibitors for platelet activation. Ca2+-activated phospholipid-dependent protein kinase (protein kinase C) preferentially phosphorylates 40K protein. As judged by fingerprint analysis, the sites in 40K protein that are phosphorylated during the platelet activation appear to be identical with those phosphorylated by protein kinase C in a purified cell-free system. 12-O-Tetradecanoylphorbol-13-acetate, which directly activates protein kinase C by substituting for diacylglycerol, stimulates 40K protein phosphorylation and release reaction without inducing diacylglycerol formation. Tetracaine, which inhibits protein kinase C by competing with phospholipid, blocks 40K protein phosphorylation and serotonin release without inhibiting the receptor-linked diacylglycerol formation. The results indicate that thrombin and collagen activate platelets in almost similar mechanisms and that protein kinase C may lie on a common pathway which leads to the release of serotonin. However, analysis with indomethacin indicates that the role of thromboxane A2 appears to be more predominant for the action of collagen, and it is suggestive that this arachidonate metabolite activates platelets in an analogous mechanism to thrombin.
Keywords
Affiliated Institutions
Related Publications
Thrombin-induced protein phosphorylation in human platelets.
Intact human platelets loaded with 32PO4 contain multiple phosphorylated proteins. Thrombin treatment of intact 32PO4-loaded platelets results in a 2-6-fold increase in phosphor...
Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase.
Ca2+-activated, phospholipid-dependent protein kinase recently found in mammalian tissues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) ...
Calcium, phospholipid turnover and transmembrane signalling
Turnover of phosphatidylinositol, which is provoked by various neurotransmitters, peptide hormones and many other biologically active substances, appears to serve as a signal fo...
Proteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease.
A Ca2+-dependent protease I), which hydrolyzes casein at Ca2+ concentrations lower than the 10(-5) M range, is purified roughly 4000-fold from the soluble fraction of rat brain....
Reconstruction of platelet proteins into phospholipid vesicles. Functional proteoliposomes.
Platelet membrane glycoproteins IIb and IIIa were reconstituted into liposomes containing phosphatidylcholine. The reconstituted vesicles bound antiplatelet antibodies and showe...
Publication Info
- Year
- 1983
- Type
- article
- Volume
- 258
- Issue
- 3
- Pages
- 2010-2013
- Citations
- 367
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/s0021-9258(18)33089-8