Abstract
Abstract This article offers a synthesis of Bayesian and sample-reuse approaches to the problem of high structure model selection geared to prediction. Similar methods are used for low structure models. Nested and nonnested paradigms are discussed and examples given.
Keywords
Affiliated Institutions
Related Publications
Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests
Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental conc...
Gaussian Process Priors with Uncertain Inputs Application to Multiple-Step Ahead Time Series Forecasting
We consider the problem of multi-step ahead prediction in time series analysis using the non-parametric Gaussian process model. k-step ahead forecasting of a discrete-time non-l...
Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
Collinearity refers to the non independence of predictor variables, usually in a regression‐type analysis. It is a common feature of any descriptive ecological data set and can ...
pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination
Abstract Motivation: Generation of structural models and recognition of homologous relationships for unannotated protein sequences are fundamental problems in bioinformatics. Im...
Model Uncertainty, Data Mining and Statistical Inference
This paper takes a broad, pragmatic view of statistical inference to include all aspects of model formulation. The estimation of model parameters traditionally assumes that a mo...
Publication Info
- Year
- 1979
- Type
- article
- Volume
- 74
- Issue
- 365
- Pages
- 153-160
- Citations
- 917
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/01621459.1979.10481632