Abstract
In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations. We compare shape context, steerable filters, PCA-SIFT, differential invariants, spin images, SIFT, complex filters, moment invariants, and cross-correlation for different types of interest regions. We also propose an extension of the SIFT descriptor and show that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.
Keywords
Affiliated Institutions
Related Publications
PCA-SIFT: a more distinctive representation for local image descriptors
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid (June 2003) rec...
Video Google: a text retrieval approach to object matching in videos
We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a s...
Learning hierarchical representations for face verification with convolutional deep belief networks
Most modern face recognition systems rely on a feature representation given by a hand-crafted image descriptor, such as Local Binary Patterns (LBP), and achieve improved perform...
Local Features and Kernels for Classification of Texture and Object Categories: An In-Depth Study
Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that rep...
Discovering objects and their location in images
We seek to discover the object categories depicted in a set of unlabelled images. We achieve this using a model developed in the statistical text literature: probabilistic Laten...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 27
- Issue
- 10
- Pages
- 1615-1630
- Citations
- 6674
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tpami.2005.188